Proof

  1. Part of the definition of \(\sim\)-connected is being nonempty

  2. Suppose \(a \in A\) is in the intersection. Then \(a \sim p\) and \(a \sim q\) for some elements \(p \not\sim q\) arbitrarily selected from \(A_p, A_q\). But this is impossible because \(\sim\) is transitive, so this must be impossible.